Scalable Localization with Mobility Prediction for UWSN

Participants: Zhong Zhou, Jun-Hong Cui and Amvrossios Bagtzoglou

Problem:

• Challenges in UWSN: acoustic communication, node mobility, 3-D networks, and large scale
• Utilizing mobility: underwater objects move with temporal correlation and spatial correlation
• Our objective: design a scalable localization scheme with low overhead while good performance

Proposed Solution: Scalable Localization with Mobility Prediction (SLMP)

Network Model: hierarchical network architecture

- Surface buoy: can be localized by GPS or other means
- Anchor node: communicate with buoys to get localized
- Ordinary node: can only communicate with its neighbors

The Main Idea:

- Anchor nodes do mobility prediction based on the temporal correlation, and broadcast their model parameters
- Ordinary node do mobility prediction based on the spatial correlation and the received messages.

Anchor node mobility prediction

1. Initialization, broadcast localization message
2. For every T, measure location (Sa) and calculate location (Se)
3. If |Sa-Se|>St, run prediction algorithm, get results
4. Broadcast the prediction parameters

Ordinary node mobility prediction

1. Initialization, set m=0
2. Listen
3. Is there new msg?
4. Update known reference list
5. m>=4, localized, calculate its confidence value
6. A new reference? Yes
7. Broadcast message
8. No msg in k rounds?
9. Unlocalized, clear reference list
10. Update current location
11. Yes

Performance Evaluation:

![Graphs showing localization accuracy and error over node density for different prediction models.](image_url)